emc standards

Another EMC resource from EMC Standards

Mains Power Quality Guide

> Figure 1 shows how a fluctuating current in one load affects the mains voltage supplied to the other loads on the network, because of the impedance in the mains supply. The 'stiffer' the supply (i.e. the lower its impedance) the less is the effect of load fluctuations. By the time the mains reaches the consumer, it is showing the strain, and wear and tear of its long journey, like a medieval pilgrim who starts off fresh and healthy in smart clothes, and arrives at his destination tired and weary, dirty and travel-stained, with a few injuries and infections picked up along the way.
AC mains electricity is distributed in public networks from the electricity generators to the consumers. When it is generated it has a very pure sinewave voltage at 50 or 60 Hz (the rest of this guide will assume 50 Hz , but the 60 Hz issues are identical) - but generators can run slow or fast, and so we have the Power Quality problem of frequency variations
As the electricity travels along its journey to its consumers it suffers various degrading influences, such as surges due
to lightning activity, and radio frequency (RF) interference from radio and TV source impedance, and the conductors
and transformers that the electricity flows
through along its route add series
impedance, so fluctuations in the current all
consumption of one load current affect all the others
Figure 1 How mains voltage fluctuations are caused
by fluctuating load currents
$\mathrm{V}_{\text {DROP }}$ Higher impedance means higher voltage fluctuations,
for a given current fluctuation

A fluctuating current drawn
from the mains supply by one
load, or a number of loads

vom rm
Assuming a constant voltage
level is originally generated published documents that describe power pue sџэəみə＇səsnes д！ solutions，such as［2］，［3］，［4］，［5］［6］and
［7］．The REO EMC Guides［8］－［19］are

 for equipment，but do not describe
solutions．
 cost to the US economy of power quality
 $\$ 188$ billion，with about 85% of this cost
due to power interruptions（＇outages＇）．

 reliability，safety，and financial issue for all companies，especially as all companies now rely on computers and computer
 their financial performance，and computers are notoriously susceptible to power not work at all when their power is
general there are three kinds of mains
 each with their own characteristics for impedance and frequency stability．In

 the mains distribution systems on large ships，which of course are powered from
 more from power quality problems than рәләмод ұиәud！！nbә јо sұломұәи ле！！ш！ from a national mains distribution network．

This increased loading by more ＇unfriendly＇technologies is increasing the distortion of the mains voltage sinewaves，
and also causing increased fluctuations in the voltage level．More devices connected to the mains means more possibilities for failure，so the number of dips and
 open，is increasing．

1．2 Developments that are

 increasing the need for good power quality．．．It is coincidental（but perhaps appropriate） that modern electrical and electronic cone rung品 microprocessors require very high quality DC supplies to operate correctly．Such supplies if costs of manufacture are to be kept low．But since the increasing adoption of these technologies is causing the mains power quality to reduce，their designs need to continually improve their AC－DC power conversion circuits，
increasing their costs of manufactur

In the case of SCR power converters，the power devices are almost always triggered directly from the AC mains waveform itself．Distortion of the waveform can lead to misfiring，and in some cases possibly to destruction of the

 increase，making EMC compliance less likely，and incidentally increasing the distortion of the mains waveform that
caused the problem in the first place．
variable－speed motor drives driven by
choppers＇（electronic switch－mode power choppers＇（electronic switch－mode power converters）．Tungsten filament lamps are being replaced with＇energy－saving fluorescents＇（which use electronic swit
mode power converters with rectifier－ capacitor mains inputs）．

In our working lives we now employ many more computers，printers，and other in our home lives we are all busy acquiring computers，wide－screen televisions and home theatre systems，DVD players，etc． All of these modern work and home appliances are connected to the mains via －sıәдәлиоэ ләмод әрош－чэџ！мs ग！иодэәә Frequency－changing switch－mode power converters，such as variable－speed motor
 noise on the supply at interharmonic
 its harmonics－and also at frequencies hat are due to the intermodulation of the

 아 Би！реә оs｜е әле spuәдұ би！ィеs－КБәәиヨ

 short－term fluctuations in load levels， hence increasing fluctuations in mains

${ }^{\circ}$
0
0
0
0
0
0
2
0
0

 the capacitors in rectifier－capacitor AC－DC converters charge up）to transients and other current waveshapes with frequency spectra from below 1 Hz to over 1 GHz ．

Frequency variations

3－phase unbalance

－DC in AC supplies
Overvoltages（swells，surges，transients and electrostatic discharge（ESD）

Undervoltages（sags，brownouts，dips， dropouts and interruptions）
－Voltage fluctuations and flicker
－Common－mode low－frequency voltages
－Voltage waveform distortion（harmonic and interharmonic）

- Mains signalling voltages

High－frequency surges and transients，
radio－frequency（RF）voltages and
1．1 Developments that are making the mains quality worse．．．

More and more electrical and electronic equipment is being used，increasing the oads on mains power distribution networks．This is a problem in itself，but continually changing especially due to the current trend towards higher efficiencies， which is replacing older technologies that were＇kinder＇to the mains supply with
particular：phase－angle or＇burst fire＇power
 electronic switch－mode power converters with rectifier－capacitor mains input circuits． For example，almost all direct－on－line
（DOL）motors，from tens of MWlace with

Three kinds of AC power supply - Local generation

Examples of local generation, driven by internal combustion engines

$$
\begin{aligned}
& \text { Range of frequency variations: up to } \pm 15 \% \text { (but maybe up to } 50 \% \text { or more when heavily } \\
& \text { overloaded and about to trip out, or when a heavy load has iust been switched off }
\end{aligned}
$$ overloaded and about to trip out, or when a heavy load has just been switched off) Source impedance typically $3 \times$ that of a distribution transformer with the same VA rating

7 th (etc.) harmonics, and if the supply frequency varies significantly they may become less effective, allowing harmo currents to flow in supply networks that are unable to deal with the resulting heating effects.
Passive harmonic filters are often 'offtuned' slightly to help prevent the occurrence of resonances in the distribution network they are used on. If supply frequency variations result in peak tuning of the filters, supply resonance might occur in some circumstances, possibly resulting in severe waveform and damage to the equipment powered from the network, if not to the network equipment itself.
more than 10% or so, the effect on the equipment could be that the unregulated ail drops below its minimum value up to 100 (or 120) times every second. This can have a similar effect on equipment as dips or dropouts in the supply, such as are tested by EN 61000-4-11 (see [8]). But dropouts with 10 seconds between each - high values of ripple due to low supply frequency is like each dip or dropout
occurring much more often. occurring much more often.
2.2 3-phase unbalance
 caused by unbalanced load currents, as sketched in Figure 5, unbalanced distribution network faults, etc. (most network faults are unbalanced). Both the voltage and the phase can become unbalanced either separately or at the same time, such as the example waveforms shown in Figure 6.

Figure 5 An example of three-phase unbalance caused by single-phase loads
unbalance caused by single-phase
loads ∞
0
0
0
0

n a typical office, not all
of the PCs are identical
So their load currents

Both linear and switch-mode AC-DC converter types will suffer increased ripple amplitude in their unregulated rails at power supply frequencies less than

Relays and contactors powered from the AC power supply (usually via an isolating ransformer) and held-in at reduced ut if voltage (to save energy) might drop-out if the supply frequency changes by a ratures make this more likely. When the frequency variation returns to within a few \% of nominal, they will not pull back in again because of the low value of the voltage applied to their coils.

Most electronic equipment that is powered by the AC mains supply simply rectifies it and converts it to DC to power its circuits. These are usually unaffected by small | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |

by large falls in frequency.共

EN 61000-4-28 also does not mention that reducing the frequency of the AC voltage supplied to a mains transformer increases the magnetic saturation of the core and hence increases the magnetising current. This can lead to overheating transformers,
which has occurred when transformers which has occurred when transformers
designed for 60 Hz mains were used on 50 Hz . In normal circumstances this should not be a problem, but there is great pressure to keep costs low - and
reducing the amount of copper and iron in transformers is one way to do that. This increases the saturation of the core and the magnetising current, and makes the transformer much more susceptible to reduced mains frequency. The range of the AC supply frequency should always be taken into account when designing costeffective mains transformers.

EN 61000-4-28 mentions that AC motors end to draw less power when their supply frequency reduces. But it does not mention the corollary - that a higher supply
frequency causes AC motors to spin faster, and since the power required by most
loads are proportional to some power of motor speed (e.g. the square or cube), the increased loading could be significant even for quite a small increase in supply
frequency. Increased loading generally
means increased current drawn from the power supply, but AC motors that cannot supply the power required could increase their slip speed dramatically, maybe even causing them to be unable to supply sufficient power to their loads, causing them to stall, with consequences that
depend upon the application.
one phase of a three-phase supply, on the assumption that all of the phases behave in the same way. So when an unbalance occurs the sensors might not measure what is required to control the equipment correctly, and misoperation, overheating and even damage might be the result. 2.3 DC in AC supplies Mains distribution networks are supposed o operate with symmetrical AC voltage and current waveforms, and most loads are supposed to be symmetrical too. Some very powerful loads, such as rectifiers for Chlor-Alkali industrial processes, are half-wave rectifiers, and some low-power loads are too (e.g. hairәsnes os pue '(sұəyue|q ग!иəәәә 'sıəKıp
 ise to DC voltages due to the impedance in the networks. Many items of electronic equipment will continue to operate its full-wave bridge rectifiers into half-wave rectifiers, another source of DC currents in power networks.
The rotation of the earth in the magnetic
 voltages into long cables, especially a problem for very long east-west
distribution cables, especially during a 'solar storm'. In the past this combination
 Canada, as the protection devices in their ransformers to prevent damage due to
DC in AC supplies is especially a problem for magnetic circuits, such as transformers and DOL AC motors, because the DC voltage results in a DC current that increases the saturation of their magnetic cores. This leads to excessive
ipple voltage and the higher its frequency.

But the ripple voltage and frequency on without storage capacitors is very rapidly affected by any unbalance in their threeə૫ł Бu!MO\|Of St!nכı! ə૫ł fl *Kiddns əseyd rectifier have not been designed to cope
with the ripple that can result from likely unbalances - they may be affected by it.

 facilities based on modern 'blade servers' can do this too. Their battery chargers are

 the response of such equipment to likely levels of ripple on their $D C$ supplies.
 speed drives for AC motors, the result of
 is an increased level of interharmonic distortion in their output (waveform
 to the output frequency). This output

 frequency DC ripple and its harmonics
with their output frequency and its with their output frequency and its harmonics, resulting in increased
 mains distribution network, worsening its power quality. It is not unusual for poor
 loads in a way that results in even worse

For reasons of cost, sensors (voltage,
current, power, etc.) are usually placed
different industries within one country. For example, electricity distribution companies in the UK use the term 'short interruption'; to mean an interruption that lasts for less than three minutes - whereas in IEC immunity test standards for equipment, a short interruption' is one that lasts less
than one second
If you are concerned with whether people can manage with torches and will not suffer hyperthermia or hypothermia due to ack of power for either air-conditioning or heating, three minutes is probably a
reasonable maximum for a short a
interruption. But if designing electrical or electronic equipment to 'ride-out' a dip or dropout, an interruption of more than one second generally marks the boundary between just adding a few more capacitors to the power converter board, and having

Dropouts and interruptions are simply dips with a depth of more than 95% of the nominal mains voltage. The closer a fault is to the measuring point, the deeper the dip tends to be. 'Short interruptions' are enerally considered to last less than one generally considered to last less than one considered to last longer than one second, and are usually caused by faults. Figure 7 shows some idealised examples

 crossing of the waveform, as is done in the standard immunity tests. Of course, in real life the point on the waveform at which the voltage changes is just given by
 life examples of dips in MV three-phase supplies.

The reader should beware that there is very little standardisation of terminology, from one country to another, and between

Figure 8 Example of a three-phase voltage dip, from Figure 3 of [21]

second or two). And decreases in load
current cause the supply voltage to emporarily rise above nominal. Short-term load currents (e.g. less than 500 ms) cause dips that can be finished before the automatic regulators can respond, a typical example being faults, which cause very high currents to flow for a fraction of a second until they are cleared by the operation of protective fuses or circuit breakers.

According to IEC standards, dips are transient reductions in the supply voltage, o as little as 5% of nominal, typically lasting for less than 1 second. In North America it is common to call these events sags', but the IEC reserves this term for longer-term reductions in voltage, lasting seconds or more, which are called brownouts' in North America.

Dips, dropouts and interruptions
 Figure 7

network can adjust (which typically takes a
the automatic voltage regulators on the

The ITI (CBEMA) Curve

Figure 10

The ITI (CBEMA) Curve (2000 revision)

(s)

shows that a good many dips, dropouts and short interruptions occurred that were outside the ITI/CBEMA curve, which could therefore be expected to cause problems

 a test method and standard (SEMI F47 "Specification for Semiconductor

Processing Equipment Voltage Sag
proportion of the dips, dropouts and short

 December 2006, and Figures 12 and 13
are taken from it. Figure 12 shows data on 'customer interruptions' lasting more than

3 minutes, from mid-2001 to mid-2006.

 lines. The overcurrent protection devices are now mainly of the 'automatic recloser' type that reapply the power after a few seconds to see if the arc has ceased. If the fault is still there after a few retries, the protection device assumes a permanent fault and switches off until reset manually by a service engineer. As a result, many of the long interruptions in the mains supply last for just a few seconds, and 'outages' are much less

In LV distribution networks, the main type of fault is damaged cable insulation, and automatic reclosing is not appropriate Overcurrent protection devices are
nch of remove power from an entire branch of
cause very long interruptions or outages.
 Short interruptions are interruptions lasting less than 3 minutes, and are caused
by operations of the network designed to reduce the length of interruptions The majority of short interruptions are associated with automatic restoration schemes, such as: pole or ground-mounted auto reclosers; rural automation

[^0]
 exploration platform mentioned in 3.1, where the 230 V (nominal) mains supply pue sচes pey ıołeıəuəી ןəsə!p st! moı! swells of 95% (12 V to 450 V rms), lasting
 and stopping its huge drill motor. These enormous voltage variations would last for әчд !о цэnш pue 'чəеә spuoэəs ןеләләs

 certainly not to be damaged. Another example is the mains distribution in an

nominal 220 Vrms , but in fact varied from 140 Vrms to 300 Vrms .
Figure 13
 schemes; and load transfer schemes
From: "2005/06 Electricity Distribution Quality of Ser caused by load current variations. Sags are when the voltage slowly declines
usually over a period of seconds or

 2.5). Both are caused by variations in
loading on the supply network. Figure 15 shows an example of a sag followed

network prevent these from being more than a few percent of the nominal voltage, but if the regulators have run out of
correction range, or have failed, sag
correction range, or have failed, sags and
swells can have much larger values.

(hence costly) monitors can be required. Old-fashioned digital circuits would often be fitted with nothing more than a simple watchdog, on the assumption that if the regulated power was going to fall below specification, it would go all the way down to zero. Such designs will produce
unreliable products that will not pass tests to EN/IEC 61000-4-11.

A momentary drop in the regulated rail for an analogue circuit can cause functional errors, but they are usually self-recovered after the dip or dropout is over. However, power amplifiers can suffer transient glitches or short 'squeals' of instability, either of which can sometimes damage the loads they drive (or in the case of oudspeakers or headphones cause objectionable sounds). See 2.11 for more on the effects on electronic circuits.

Discharge lamps often will not reilluminate for several minutes after a short mains interruption. This can of course cause problems where the lighting is required for safety or security reasons. The generic and product standards that are used by manufacturers to achieve a 'presumption of conformity' to the EMC Directive for mains-powered equipment, require testing with only a few of the wide range of tests in EN/IEC 61000-4-11 [8]. As a result, equipment that fully complies with all relevant harmonised EMC
 Directive can still have unreliability problems in real life. This is shown very clearly by Table 1 of [4], and [4] concludes that "...whilst EMC standards are useful, necessarily be immune enough to function correctly under many of the disturbances that can be considered normal, if

[^1]

2.5 Overvoltages: Swells

Swells are when the supply voltage is higher than normal limits for a while (e.g. a few seconds), and are assumed by IEC equipment test standards to have slow rise
and fall times (e.g. seconds). This usually occurs when there is excess power generation connected to a network, for example when a large amount of load has been lost and the automatic voltage
stabilisers have not yet operated, or are at

Swells are normally expected to remain cos they can be very much larger, as in the North Sea oil exploration rig example in 2.1 and 2.4 , or the African mains supply example in 2.4.
 could couple into circuits and long measurement leads and disturb them
directly. This is more likely to be a problem
for circuits that measure or control small
signals, especially if those signals lie in the DC to 50 Hz range.
2.7 Common-mode low-frequency voltages

In most low-voltage mains supply networks in the UK, and in many other countries, the neutral is connected to earth at the highvoltages at various locations around the area served by that network will not be zero, and will vary. Typically, they have a small, fluctuating voltage at the frequency of the mains power supply, often with significant harmonic distortion, from a few hundred

This is partly caused by the voltage drops in
the neutral cables themselves, due to the
currents they carry - especially due to
three-phase unbalance and harmonic currents in the phases, and partly by
potential differences between different parts

c) Increased ripple

d) Loss of function in control systems A further possibility is...
 (below 50 Hz) The first three points above focus on the
 from the mains supply and used in lectronic products. Mains voltag fluctuations will cause a ripple on an couple directly into any circuits it powers 0
 changes in the unregulated voltage might
 regulated rail.

Some power supply circuits (whether go unstable when their control loops are excited by the fluctuations in their the error in the regulated DC voltage to be given the change in the mains voltage.

Figure 20 Some examples of harmonically distorted mains
Flat-topped (idealised)
Very common, caused by rectifier-capacitor loads

This signalling method is often called
'ripple control', because when seen on an 'ripple control', because when seen on an oscilloscope it appears as a ripple in the
peak level of the mains voltage. It is mostly used in national power systems, and sometimes in in systems too, at LV, MV or HV. The between 2 and 5% of the nominal mains volage. Resonances can increase then levels of this voltage distortion component to as much as 9%. More detail will be
found in [28].
All the above mains-power-related phenomena can be much worse wh mains distribution system is of poor quality, or when mobile or portable 4) because they have higher source impedances.
 frequencies that are not phase-locked to the mains waveform, and appears on a 'line-triggered' oscilloscope as nonsynchronised frequencies that ripple through the display. On a spectrum
 interharmonic frequencies beat with the

 these beats can easily be seen on an oscilloscope.

Signal frequencies from 110 Hz to 3 kHz are used in some mains networks (or parts of

in parts of the network. The frequencies

 directly causing waveform distortion.
testing the immunity of equipment to low-(1000-4-16 Neutral-to-earth voltages are tested by applying its tests to an equipment's mains inputs, and inter-system earth (ground) noise [24] is tested by applying them to its signal, data and control interconnections. Clause 3 of EN 61000-4-16 says that CM disturbances from DC to 150 kHz can ...influence the reliable operation of equipment and systems installed in residential areas, industrial areas and electrical plants." The author does not know why commercial, entertainment,
medical, healthcare or military areas were omitted from this list despite suffering from exactly the same problems with CM disturbances below 150 kHz .
disturbances covered by EN 61000-4-16 cause CM noise to appear in the circuits
Depending on the design of these circuits a proportion of the CM noise is converted into DM noise in the wanted signal. Depending on the circuit design, this DM noise might cause the circuit to function
 even suffer permanent damage.
Continuous CM disturbances are not
 circuit (although damage to equipment
controlled by the circuit might occur), but short-term CM disturbances can have much higher levels so could actually cause permanent damage to the circuit components.
It is impossible to be any more precise damage that can occur due to CM disturbances below 150 kHz . This is
2.10 High-frequency power quality problems
All the above phenomena are specifically problems of mains generation and distribution networks. But all mains supply distribution networks use long cables, and so suffer from all of the electromagnetic (EM) disturbances that conductors can suffer. These include transient overvoltages, commonly called 'surges', typically caused by the various effects of lightning, and flyback voltages caused by the release of stored energy when large reactive loads such as large motors, large transformers or capacitor banks (e.g. power factor correction capacitors) are
 disconnected from their supply. The supply distribution network itself also has significant inductance in its ransformers and conductors, so an abrupt disconnection of a load also
 are generally caused by fault clearance.
 equipment can carry 100s or even kA of urrent during a fault, so when the faut current is interrupted ('cleared') by a fuse, circuit-breaker or other protective device
 than when the equipment is switched-off normally.
Surge waveforms are almost infinitely variable, depending on the source of the surge and the impedance and resonance characteristics of the supply network. Three types are used by IEC immunity standards: unidirectional surges, ringwave surges, and oscillatory surges, as shown in Figure 22. See [18] for more information on surge overvoltages.

e

 peration of circuits that rely on the zerocrossing of the mains waveform; noise coupling from mains cables and interference with radio and TV sets,digital clocks and timers, hi-fi and other audio systems; unreliable operation of computers.

- Telephones: increased levels of audible
noise (even to the point of making conversations impossible, which can circumstances).
- Power distribution networks: excitation of system resonances leading to increased levels of voltage distortion -
exacerbating many of the above

Harmonics and interharmonics, and their effects, is a very big subject, and is dealt

 and associated references in this guide, readers are requested to refer to those
2.9 Mains signalling voltages

IEC 61000-4-13 [9] is a standard for testing the immunity of equipment to harmonic voltage waveform, and its interharmonic tests also address immunity to mains signalling voltages. It is harmonised in Europe as EN 61000-4-13.

The problems caused by mains signalling voltages are the same as those caused by other interharmonics, see 3.8 and [28].

- Cables: increased temperatures,
inability to provide full current rating without overheating, reduced life,
increased likelihood of damage.
- Transformers: increased temperatures, overheating, reduced life, increased likelihood of damage, increased
acoustic noise emissions.
- Fuses and circuit-breakers Fuses and circuit-breakers: reduced life,
increased 'nuisance tripping' when the power consumed by the loads is still within the current trip rating. Surge suppressors: reduced life,
increased likelihood of damage. - Electricity meters: increased errors. emissions of acoustic noise, incandescent lamp flicker. IEC 61000-4-13 [9] is a standard for esting the immunity of equipment to distortion of its mains supplies by harmonic or interharmonic frequencies, and is harmonised in Europe as EN

61000-4-13 would predict the immunity of 61000-4-13 would predict the immunity shown in Figure 21.

A wide range of equipment can be affected by distorted mains waveforms,

Capacitors: reduced life, increased
likelihood of damage, fuse disconnection, damage to any switching contacts.

Rotating machines (motors and generators): reduction in efficiency, increased temperatures, overheating, emissions, pulsating or reduced torque, shaft fatigue, reduced bearing life, damaged products.
 $\begin{array}{ll}\text { These high-frequency power quality } & \text { 2.11 Problems with electronics and } \\ \text { problems can cause significant problems, } & \text { software }\end{array}$ problems can cause significant problems, software

Electrical and electronic circuits are designed for the range of supply voltages supplied by the Electrical Utility, but poor mains power quality can make the range actually experienced by an item of
equipment wider than what was expected. This is especially so because many types of equipment derive their unregulated DC rail from the peak of the mains waveform, whereas it is the rms value that is

$$
-1-1-1+2
$$

Supply voltages that are higher than a circuit was designed for can cause misoperation, as well as overheating and
 that are lower than a circuit was designed for can cause them to misoperate, but
overheating and damage are only a problem for some rare circuits. How a

Figure 24 illustrates an overview of the kinds of EM phenomena that should be taken into account to help ensure adequate reliability (and/or safety) and reduce financial risks.

hundreds of mV , but up to tens of volts in
some cases (possibly hundreds). RF
current levels are typically about onehundredth of the voltage levels so could be up to hundreds of mA in some cases (possibly Amps). Figure 23
sketches some examples of these EM phenomena.
Sparking during the opening of electro-mechanical contacts causes a radio-frequency disturbance called Fast Transient Bursts, discussed in more detail in [17]. Electrostatic discharge events also couple frequer, R Radio frequencies are present from 150 kHz up to thousands of MHz , from broadcasters, radars, certain kinds of industrial and medical equipment, and portable wireless devices like walkie-talkies and cellphones, and cause RF currents and voltages in all conductors, including mains cables
typi
manual restart once the correct starting conditions have been met. For example, where a number of motor drives are controlling the processing of a web of material, their speeds must be synchronised. If any one of them gets 'out of step' it risks breaking the web, which can be very costly. So it may be necessary
to bring the web safely to a halt, and restart the process when the disturbance that caused the problem is over.
An often-overlooked aspect of a crash or
lock-up is that the outputs of the digital circuit can be left in any random combinations of states until the successful reboot. In the case of computerised
systems running large operating systems,
the reboot time can be measured in minutes. During this time the digital outputs may be sending erroneous control signals undesirable situations. In some
applications such random outputs might
even cause damage to the equipment
being controlled, or safety hazards to its users or third parties.
Some types of high-reliability equipment,
such as life-support, cannot be allowed
any deviation from full-specification
operation. Such equipment is often
powered from an uninterruptible power
supply (UPS), in which case the UPS must
pres in its reallife application. Some types of UPS are not
as 'robust' as they need to be usefully improve the reliability of mains-powered equipment.
Power control circuits (e.g. inverter drives, switch-mode power converters) might suffer actual damage due to cross-
devices, when their controlling devices

61000-4-11: AC supply dips, dropouts, interruptions, sags and swells, [8] 61000-4-13: Mains harmonics and interharmonics, [9]

61000-4-14: Mains voltage fluctuations (flicker), [10]

61000-4-16: Common-mode
disturbances, 0-150kHz, [11]

- 61000-4-17: Ripple on DC input port

61000-4-27: Three-phase unbalance, [12]

61000-4-28: Power frequency variations, [13] and variations, [14]
-61000-4-29: DC dips, short interruptions
There are also five IEC (also adopted as EN) standards relevant for testing the mmunity of equipment to high-frequency power quality phenomena not covered by this guide:

61000-4-2: Electrostatic discharge (ESD), [15]

- 61000-4-3: Radiated RF fields, [16]
- 61000-4-4: Fast transient bursts, [17]
- 61000-4-5: Surges, [18] 61000-4-6: Conducted RF currents and
voltages, [19]
b) The equipment meets a relaxed set of limits or rules given by IEC 61000-3-12. In this case the Network Operator must
be notified of the connection and be notified of the connection and relevant details. They may subsequently choose to perform an assessibit the initial connection.
c) The equipment does not meet even the relaxed limits or rules in IEC 61000-312. In this case the Network Operator
must be notified and must give their permission before connection is undertaken.

A similar set of three connection criteria
 61000-3-11, see [32].

Product standards can also contain power quality requirements, for example the new

 weighted harmonic distortion (PWHD) and pue ұuәueuiəd лоґ sənןел כ!! ! $5^{\text {th }} 7^{\text {th }}, 11^{\text {th }}$

There are numerous IEC/CISPR standards relevant for testing the emissions of equipment that could affect the highfrequency power quality issues the ones

$$
\text { - CISPR } 22 \text { (EN 55022) emissions of }
$$

conducted and radiated RF above 150 kHz
†๐ suo!ssiwə (LLOSG Nヨ) LレปdSIO •
conducted and radiated RF above 150 kHz

currents generated by all equipment connected to a point of common coupling, which is usually fairly easy to prod using manufacturer's data. Another set of rules applies for equipment that draws its on MV or HV distribution connected to the MV or HV distribution networks. In these cases more complex procedures are called for. [44] is an 'hidden costs' of G5/4-1 compliance.
via the internet. There are probably many other standards, or codes or practice, used within power generating and distribution organisations in other countries, but they
documents. Another guide is Part 5.2.4 of [1]. Because harmonics have become a
 for dealing with them. Two that are

- G5/4-1, ER G5/4-1 Issue 1, 2005:

әбеңоィ э!иошиен ıод s/əләך би!ииеІд„, Distortion and the Connection of NonLinear Equipment to Transmission the United Kingdom", [39] and its various guidance documents [40] [41] and [42] - IEEE 5191992 "Recommended Practices and Requirements for
 referenced in North America.

G5/4-1 is used for managing harmonic distortion in the UK's public mains power distribution systems. It applies to all consumers at their point of common connection to the public supply network
(the point at which the consumer is connected to other consumer's on the
 consumers agreement to connect with the Network Operating Company.

For installation of equipment above 75A per phase, if the pre-existing total harmonic voltage waveform distortion (often called the Network Operator, in the
 an assessment of the total harmonic
3.3 For designing equipment and systems and installations

There is just one IEC standard containing guidance on the design of systems and installations with respect to the lowfrequency power quality issues covered by this guide, and it only covers earthing impedance and reduction of stray coupling between cables:
$61000-5-2:$ "EMC Installation and
Mitigation Guidelines Earthing and
Cabling"
Various organisations, trade associations and professional institutions have their own codes of practice and other internal documents covering design, especially military (see [34] and [35]), and they can include issues relating to power quality. such as telecommunications or railway such as telecommunications or railway
networks) will often have power quality requirements, which they should have included in the technical specifications sections of their 'request for quotation' or tender documents, and/or in purchasing contracts.

However, if a customer has not included such technical information, this does not mean that they do not have such requirements, or at least some guidance. Although it is always tempting to breath a sigh or relief and design the equipment, system or installation in the usual way, hoping that if any problems arise the customer will pay to have them solved, in practice customers generally expect new purchases to work as advertised, and will often hold back part of the agreed price und their expected performance quality and reliability is achieved. So the supplier ends up paying the costs of modifications necessary to deal with power quality on a
5.1 What power quality
specifications to aim for?

The figures in EN 50160 [37] are quite
surprising when compared with the
requirements of the equipment standards
isted under the EU's EMC and Safety
Directives, [48] and [49] respectively. For
example, EN 50160 states that for 95% of
each year, the level of surges on singlephase public mains supplies can be 6 kV "or more". Quite what levels of surges are possible during the remaining 5% of the year is not specified (although the 6kV limit is usually set by the flash-over voltages between the terminals of singlephase wall sockets, so it might not be much higher).

However, obtaining a 'presumption of

 requires surge testing to only 2 kV . And Voltage Directive [49] generally base their
voltage withstand' requirements on IEC
60664 , which specifies surges of up to 2.5 kV .

So it seems that equipment that fully
 compliance with EMC and Safety

Directives can still suffer interference and/or become unsafe as a result of 6 kV (or more) surges on the mains supply.
 customer perception, brand image, and
 Directive [50]. This disparity was sufficient
for the EICTA to lobby the European
for the EICTA to lobby the European
Commission about it (to no avail, so far as I know), as described by the warning in
[53].

Where equipment is powered from three-
phase mains distribution networks that are not connected to single-phase sockets, the
important. In the case of an equipment әлן, the problem can require considerable expertise. So it might be more costeffective, or give better results more quickly, to engage one of the several companies who specialise in such the Internet using terms such as 'power qua surveys service' or 'power quality
consultancy'. [47] has an example of a typical power quality survey. responding but calibrated as RMS - but the calibration is only corre All such sinewave voltages or currents. All such meters should be immediately scrapped,
and replaced by true-RMS types that are accurate up to at least 2 kHz (preferably 5 kHz), because they will not be providing accurate readings of modern mains voltages or currents, increasing the risks of downtime and safety hazards like

Ignoring power quality problems with RF content, the highest frequency power quality tests are those for harmonic voltages and currents, which are measured up to the $50^{\text {th }}$ harmonic. For 60 Hz mains this is just 3 kHz , so there are no particular requirements for the test site or test set-up, as there are for EMC tests
at frequencies above 150 kHz . at frequencies above 150 kHz

It is not the purpose of this guide to describe how to do power quality
measurements. Readers who wish to do this should purchase a copy of IEC 61000 4-30 from the IEC webstore (http://webstore.iec.ch) and read and understand it. For more information on
measuring harmonics, see [6]. The Copper Development Association (see Part 5.2.1 of [1]) and others recommend monitoring power quality as a preventative maintenance activity, to detect and deal with issues before they
become significant enough to cause problems such as downtime (with consequent financial loss).

A number of manufacturers offer a range of power quality measurement equipment. Correctly setting-up the equipment to make meaningful measurements is very
 variety of ways, but proper tests use instruments that comply with IEC 61000-4-30 [45]. Annex A to this standard contains a great deal of useful information about measuring power quality in practice, ncluding:

Installation precautions for power
quality measuring instruments

Characteristics of various types of

 measurement transducer- Guidelines for contractual applications
of power quality measurements
- Trouble-shooting power quality

problems

The IEEE have the standard: IEEE 11591995 - "Recommended Practice for Monitoring Electric Power Quality", June 1995, [46], which is more likely to be
referenced in North America. Power quality measurements are all based upon measuring voltages and currents. Voltages are measured by connecting test instruments to voltage probes, and currents by connecting them essentially transformers with a core that is split and hinged so that it can be clipped around the cable in which the current is to be measured. Each probe is supplied with a transducer factor by which the reading of the test instrument is converted into the quantity being measured. For example a current transformer might output $0.1 \mathrm{~V} / \mathrm{A}$, so that for instance when it is used with a voltmeter or oscilloscope a reading of 3.04 V represents a current of 30.4 A .

As discussed at length in [31] and Part
 should use true-RMS measurement technology. To save cost, typical

4. How power quality is detected and measured

normally operate with less saturation and ower magnetising currents．For relays， contactors and solenoids：choose types
that have lower drop－out voltages．

 AC－DC as appropriate）．Power AC motors
from switch－mode AC－AC inverter drives from switch－mode AC－AC inverter drives
（instead of direct－on－line，DOL）．Replace AC motors with DC motors powered from rectified mains．

5．2．3 Three－phase unbalance

0

 motors powered from rectified three－phase mains．Similar techniques can be used for
other types of inductive loads． 5．2．4 DC in AC supplies
Replace AC－DC power converters based on $50 / 60 \mathrm{~Hz}$ transformers（so－called＇linear＇ power converters）with switch－mode

 powered instead from switch－mode
 frequency，or replaced with DC motors
powered from rectified three－phase mains 5 Undervoltages：Dips，sags dropouts and interruptions
 power converters that have a very large
 power converters rated for $85-264 \mathrm{Vrms}$
mains inputs．Such converters are mains inputs．Such converters are
ubiquitous for laptop PCs and cellph
 әле łецł sıәдәлиоэ＇риом әцł и！әәәчмкие ＇auto－ranging＇and automatically select
either 115 V or 230 V are not appropriate，
－A voltage that prevents damage due to
the expected overvoltages and／or undervoltages In urban environments in developed
 K｜｜ensn ‘｜｜ews ə！！！nb әq ueэ pəวuə！ıədxə
 providers，which may be within $\pm 6 \%$ of the
declared nominal．But in those same countries the mains supply in some rur remote areas can be very much worse， due to the high impedances in the very

 ＇s000乙 Кјеә әцł u！＇II！！s әдәм е！ןeגłSn

 and remote parts of the UK，it is not」əપઠ！પ

 pəuo！̣uәu＇g00Z u！Kałunoo ueכ！！\forall әपł se earlier，in which the nominal 220 Vrms 5．2．2 Frequency variations

Timers and real－time clocks should rely
 used in wristwatches）instead of the frequency of the mains supply．For the frequency references from terrestrial or

 motors should be increased，and／or more
turns used in their windings，so that they
hat only represents 0.09% of a year，so is within the European mains power quality

5．2 Equipment design or

 modificationWhere equipment is purchased，modifying
 improving the quality of the mains supply by adding other equipment（see 5.3 ）is usually the only option．

This section is intended for equipment designers，not for people modifying equipment designed by other people．If әuop łsəq s！t！‘pə！！！pou əq oł s！łuәud！̣nbə in conjunction with its manufacturer， әq pןnoo Kłəjes do uo！̣eлədo s！！əs！мıəцı
 be able to incorporate methods for（see mproving the mains power quality（see 5．3）within themselves．

5．2．1 Setting the range of mains voltages expected

Кןеләиәб sәбеңоләло ло sәбеңолләриก

 ol sdjə 7 ！OS łuə
 voltage in the intended application，over a period of at least one year，then，

 to one of the following：
－The average RMS voltage of the mains supply（usually for passive loads like
 supply（usually for equipment powered
by rectifier－capacitor AC－DC converters， by rectifier－capacitor AC－DC converters， RMS values）
erminal spacings of the IEC 6309 mains sockets are larger and so the surge levels could be higher．There are companies wsed in such environments who have had
 before they were reliable enough in certain industrial plant．

There are many other examples of the disparity between the requirements and EN 50160 ［37］，and these are discussed in detail in［4］．

The power quality specifications to be ＇łuəud！̣nə мəu e to uட！səp əчł u！pəsn
 a data centre（sometimes called an

 costly mains power supply will be very

 hand，a mains charger for a fashionable consumer electronics item made by a company with no brand reputation to

 at the expense of reliability．

Don＇t forget that［37］specifies the power
 most of Europe．There are places in e＇feपł uieds ןeını io sued se yons＇fou few years ago，experienced mains voltages as low as 170 Vrms during a ypical working day．And，as mentioned」əмоd әчł łnoqe 6u！̣łou skes ł！‘əəojəq
 5% of the year．Part of the UK

equipment, etc., and applying appropriate measures to them alone. During a long interruption, less essential functions could be shut down, or have their intensity or rate of operation reduced. For example, the backlight on a typical laptop PC's display automatically dims when the mains charger is disconnected, to extend the
time of operation on battery power.
Microprocessors, microcontrollers, and any other devices running software programs, should employ voltage monitor devices, often called 'brownout detectors' or 'brownout monitors'. These detect an
 RAM and programmable ROM, terminate
 malfunction it will not destroy data or alter programs.
If a software reboot is necessary following the intervention of the voltage monitor, non-volatile RAM can be used to store the previous operating state, so that - in reboot, operation can resume as before. and whether to use it or not depends heavily on any foreseeable safety
The mains power can also return at
 ensure that any reboot or power-up always causes a complete ('clean') reset of all

 to a 'cold start' (a default state, waiting for
operator input before operating).
 instability, pops, clicks, or thumps during any unanticipated power-down or powerup, as these can damage transducers and peoples ear's. Motor drives and other

Active PFC is often designed in such a
 input voltages, so combining an activerage
 of mains emissions, and high levels of immunity to power quality issues.

Some circuits sample the mains voltage,
 10 or non-volatile RAM to ride-through shortterm variations in mains voltage. Electromechanical devices such as relays, contactors and solenoids should be chosen to have low 'drop-out' or 'hold-in' voltages. Typical low-cost relays can dropout at 78% of nominal supply, whereas higher-quality types will stay held-in down
to 50% or less.

AC coils can be protected by 'coil hold-in' devices, (which powers them individually

Relays, contactors and solenoids can also

 sufficient hold-up time (energy storage) as discussed above for powering electronic devices.

Where energy storage is used as
 through performance of electromechanica devices, care should be taken to ensure that the operation of any safety functions are not delayed by too much.
5.2.8 Common-mode (CM) lowfrequency voltages
Mains AC-DC power converters should be designed to protect against CMing fully with requency voltages by complying IEC 60950, 60335-1, 60601-1, 61010-1, etc. This means either using a protectivelyearthed chassis; or double insulation and a safety-isolating mains transformer. In either case the primary circuits must have
adequate insulation from the
frame/chassis and all secondary circuits, including mains windings in AC motors

'voltage withstand' (dielectric strength)
than those specified by the normal safety standards will be required for applications
in which the levels of CM voltage can
exceed those assumed by the standards.
The above approach helps ensure safety, but the CM signal can still pass through the interwinding capacitance in the mains

An example of swell protection for an SPD

where equipment uptime is important and currents are not very low, the surge protection devices must be protected by PTCs, fuses or circuit-breakers and dimensioned so that for any likely swell
they do not start to conduct significantly. An alternative is to operate the critical equipment from a battery, or UPS, so that the operation of the PTC, fuse or circuitbreaker can be reset whilst the equipment batteries and the like, or from a standby generator.

The same technique as is shown in Figure 27 for protecting an SPD from swells, can used to protect circuits from excessively high mains voltages. In this case the
5.2.7 Voltage fluctuations and flicker

Protect equipment by designing it to withstand the expected undervoltages and overvoltages, and interharmonic

Swells can cause problems for surge protection devices. They are only rated for transient currents lasting a few tens of microseconds, and if the mains voltage rises sufficiently to cause them to draw current they soon overheat and fail. When failing, they can cause fire or shock hazards, so where this is a possibility they need to be protected by a series
resistance, positive temperature coefficient (PTC) thermistor, fuse or circuit-breaker, as shown in Figure 27.

If using a PTC, fuse or circuit-breaker the mains power could be removed from the equipment during a swell - so this is not a suitable method where equipment uptime is important. But using a resistor limits the maximum mains current to very low values, so is only appropriate for a very few types of equipment (series
por for
protecting signal, data or control inputs,
instance from 'power cross' tests). So
machinery or process control might need o ramp up quickly, slowly, or even not. It all depends on the application, and especially on any foreseeable financial safety implications.

In some critical applications (such as lifesupport) even a temporary shutdown cannot be permitted. These will need sufficient energy storage to last until the interruption is over, or until alternative energy supplies can be established (e.g. from a back-up generator).

5.2.6 Overvoltages: Swells

The best way to deal with these is to design the AC-DC power converter input circuits with higher-voltage devices and circuits, or specify/choose proprietary power converters with higher voltage tapped mains transformer with automatic tap selection, as shown in Figure 26.
voltage regulators (AVRs) that cause
noise spikes and waveform distortion.
On-site generation is often used in 'standby' mode, but changing over equipments' mains supplies from mains to generator and back again) can give rise to very ast transients, and surges. So careful

 set of power quality problems for another. One solution is to operate all
sensitive/critical equipment from high reliability continuous-on-line doubleconversion UPSs (see later).

Motor-flywheel-generator sets can use speed control and automatic voltage regulation, plus energy storage in the flywheel, to totally isolate the protected supply from the mains supply and solve all power quality problems except long interruptions. But the motor must be designed and rated to withstand the poor power quality expected from its mains supply without overheating or other damage, and without significant variations in speed.

5.3.4 CVTs (constant voltage transformers)

These ferro-resonant regulators operate
 part of a $50 / 60 \mathrm{~Hz}$ resonant circuit, so they
 waveform is often not a very good sinewave. As well as performing their primary task of stabilising the mains voltage, suppressing sags brownouts and swells, they also help remove mains waveform distortions (replacing them with their own).

[^2]
problems. These always power the protected equipment from their inverter powered from their energy storage (e.g. battery, fuel cell, etc.). While mains power is available they charge their energy storage. Figure 31 shows the general principles of such UPSs. Some lower-cost types of UPS can cause more power quality problems than they solve. For example, some types power the load from the mains and only switch the oad to their inverter's output when a certain power quality aspect has dropped below its preset threshold. These cannot protect against all power quality problems, and can cause dips/dropouts and transients at switch-over. So when purchasing a UPS, take great care to make sure that it really will provide the power quality improvements required.
5.3.7 Servo-motor controlled variable
transformers
The general principle is shown in Figure 28. They take a few seconds to correct a voltage change, so will let through shortterm over- and under-voltages, and have no effect on waveform distortions.

Just as for the multi-tapped transformer with triac switching described earlier e load is manly ele equipment supplied by rectifier-cap important for the correct operation of the equipment for the variable transformer to be used to control the peak voltage, rather than the RMS.

Figure 29 shows an example of a threephase voltage stabiliser, using a servomotor variable transformer from REO (UK) Ltd. These are available from a few hundred watts to tens of MW rating. и! uмочs рочłәш әчł ио ио!џе!иел \forall

 səop ıәмод әочм әЧł łецł әБеłиелре әцł not have to be passed through a variable transformer, reducing size, weight and cost.
5.3.8 Uninterruptible power supplies (UPSs)

A UPS is an AC-DC-AC switch-mode power converter (inverter), with its output set to the required mains frequency. It can be used to convert from one mains frequency to another. Unlike inverters variable speeds, its switch-mode output is filtered to produce a reasonable sinewave voltage.
'Continuous-on-line double-conversion'
types' of UPS can cure all power quality
mains supply provided to the equipment.
But instead of using a motorised variable transformer to energise the series transformer, they use an electronic converter based on switch-mode

They are usually used to maintain the mains voltage during a dip or short sag, and need adequate energy storage (supercapacitors, batteries, etc.)
depending on the load power and the dip/sag depths and durations that are to be protected from.

The power switching devices operate at a high frequency, for example 20 kHz , so DVRs can respond very quickly indeed to voltage waveform fluctuations.
Conceivably they could be used Conceivably they could be used to correct
for waveform distortion, but the author has for waveform distortion, but the author has
never seen them described for that purpose

An example of a 380kVA Voltage Stabiliser from REO
 under/over voltage or current or frequency; phase unbalance or failure; unbalanced oad currents, etc., as shown in Figure 33 T$r i p s ~ c a n ~ o c c u r ~ a t ~ u n p r e d i c t a b l e ~ t i m e s, ~ s o ~$ t is vital to ensure that they do not cause unacceptable damage, financial loss, or safety incidents. For example, it might be necessary to combine tripping techniques with UPSs or other techniques to provide a controlled power-down.
5.3.10 Solutions for harmonics

These are described in [6]. There are some other methods that are used on ships and similar installations where harmonic distortions of the mains waveform can be very severe, that are described in [51].

5.4 Tripping out

Protection devices are available that can detect a wide variety of power quality problems, and remove the power
completely from the protected equipmen
by operating a circuit-breaker. These
devices are often called 'protection relays'
when purchased as separate items of
equipment for use in systems and
installations. (Of course, the circuit
echniques they use could also be
incorporated directly into equipment.)
[20] "The Cost of Power Disturbances to Industrial \& Digital Economy Companies", Report reference 1006274, Electric Power Research Institute, from orders@epri.com or download from http://www.epri-
intelligrid.com/intelligrid/docs/Cost_of_Power Disturbances to Industrial and _Digital_Technology_Companies.pdf
[21] "Voltage Dip survey on UK distribution networks: January 2000 to December 2004", Energy Networks Association,
Engineering Technical Report 125

http://www.energynetworks.org [22] ITI (CBEMA) Curve and Application Note: http://www.itic.org/technical liticurv.pdf
[23] "2005/06 Electricity Distribution Quality of Service Report", ofgem report ref: 204/06, 1 December 2006, www.ofgem.gov.uk
[24] "Inter-system Ground Noise: Causes and Effects", White Paper \#8, American
Power Corporation, 2003, www.apc.com [25] "Power System Harmonics, Part 1: [25] "Power System Harmonics, Part 1:
Harmonic Sources", R Yacamini, IEE Power Engineering Journal, August 1994, pp 193 - 198, available from the IEE library: http://www.iee.org.uk/Library, libdesk@iee.org.uk
c) "Power Quality Solutions for (Conclusion): Equipment Design Solutions All three parts published in Power Quality Magazine www.powerquality.com during 2000, written by Mark Stephens, John Soward, Dennis Johnson and Jim Ammenheuser, available from a)http://www.f47testing.com/semidocuments/Semi_part_1_PQ_ Magazine_Article.pdf b) http://www.f47testing.com/semi
documents/Semi part 2 PQ Magazine_Article.pdf c) http://www.f47testing.com/semi_ documents/Semi_part_3_PQ_ Magazine_Article.pdf
[8] REO Guide to EN 61000-4-11 (AC dips, short interruptions, variations), from www.reo.co.uk/guides

9] REO Guide to EN 61000-4-13 (Mains harmonics and interharmonics), from [10] REO Guide to EN 61000-4-14 (Mains voltage fluctuations), from www.reo.co.uk/guides
[11] REO Guide to EN 61000-4-16 2 kHz , (Common-mode disturbances, 0-15
[12] REO Guide to EN 61000-4-27 (Threephase unbalance), from
www.reo.co.uk/guides
[13] REO Guide to EN 61000-4-28 (Power frequency variations), from
[14] REO Guide to EN 61000-4-29 (DC dips, short interruptions and variations), from www.reo.co.uk/guides
[15] REO Guide to EN 61000-4-2 (Electrostatic discharge, ESD), from www.reo.co.uk/guides
7. References and further reading

5.1.3 Introduction to Unbalance

оұ łиәшय！！nbə ィеәи！！－иои ио ио！！әәииоэ рие and connection on non－iinear equipment to
the electricity supply system in the UK＇，
The Electricity Association Services Limited，http：／／www．electricity．org．uk of әр！nэ \forall－sэ！иошиен би！беие ${ }^{\prime \prime}$［เt］ иопериәшшоэәу бииәәи！биヨ $\forall N \exists$
 http：／／www．gambica．org．uk／pdfs／

55／4 2001 K！！！｜еп Management Ltd．， http：／／www．pqmanagement．co．uk／picts／ G5－4\％20changes．pdf

рәриәшшоэәу，，Z66L－6LS ヨヨヨコ［とt］
 Control in Electric Power Systems＂，
 Computing and Control Engineering，
 similar articles by Steve Barker on the

 Problems＂，Electrical Engineering， $\angle \varepsilon-9 \varepsilon$ dd＇ 2002 Kıenıqə」 | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| \vdots |
| 0 |
| 2 |
| 0 |
| 0 |
| 0 |
| 0 |

 јиәшәınseәW рие би！̣sə $: 0 \varepsilon-\downarrow$ Techniques Power Quality Measurement Methods＂，http：／／webstore．iec．ch рәриәшшоэәу，，S66L－6SLL PHS ヨヨヨコ［97］ Practice for Monitoring Electric Power Quality＂，June 1995.
［47］Power Quality Survey at Wimbledon， PEML Ltd．，http：／／www．peml．co．uk／pdf ／typicalsurvey．pdf

Edition）：http：／／europa．eu．int／eur－lex／lex／Lex UriServ／site／en／oj／2004／I＿390／＿ 39020041231 en002400 $\overline{3} 7$. pdf． A table of all the EN standards listed under the Directive is at：http：／／europa．eu．int／comm ／enterprise／electr＿equipment／emc／index．htm ［49］The consolidated version of the Low Voltage Directive，2006／95／EC，replaces 73／23／EEC and its amendment by 93／68／EEC，http：／／europa．eu．int／comm／ enterprise／electr＿equipment／／v／index．htm ［50］The Product Liability Directive， 85／374／EEC amended by 99／34／EC， implemented in the UK as the Consumer Protection Act 1987，http：／／europa．eu／ scadplus／leg／en／lvb／l32012．htm， http：／／www．dti．gov．uk／files／file22866．pdf ［51］＂Guidance Notes on Control of Harmonics in Electrical Power Systems＂， American Bureau of Shipping，May 2006， from：http：／／www．eagle．org／absdownloads ／listdetails．cfm？id＝346 or via：http：／／www． eagle．org／news／PRESS／jun07－2006．html	

affairs／sectorpanels／emc／index．cfm
affairs／sectorpanelslemc／index．cfm ［53］＂Quality of Electricity Problems in the European Union Cause Concern for
 ca／epic／site／imr－ri．nsf／en／gr127068e．html EN and IEC standards may be purchased from British Standards Institution（BSI）at： orders＠bsi－global．com．To enquire about a product or service call BSI Customer
Services on $+44(0) 2089969001$ or e－mai Services on +44 （0）20 89969001 or e－mail them at cservices＠bsi－global．com．IEC standards can also be purchased with a
credit cars，in English and many other
languages，from http：／／webstore＠iec．ch
［48］European Union Directive 204／108／EC
on Electromagnetic Compatibility（2nd
Edition）：http：／／europa．eu．int／eur－lex／lex／Lex
UriServ／site／en／oj／2004／390／l＿－
39020041231 en00240037．pdf．
A table of all the EN standards listed under
the Directive is at：http：／／europa．eu．int／comm
／enterprise／electr＿equipment／emc／index．htm ［49］The consolidated version of the Low
 73／23／EEC and its amendment by
／سшоэ／łu！̣＇nə‘edoınə／／：dમч ‘ગヨヨ／89／દ6 ［50］The Product Liability Directive， 85／374／EEC amended by 99／34／EC， Protection Act 1987，http：／／europa．eu／ scadplus／leg／en／lvb／l32012．htm， ：dpu
［51］＂Guidance Notes on Control of
 from：http：／／www．eagle．org／absdownloads ／listdetails．cfm？id＝346 or via：http：／／www．
 affairs／sectorpanels／emc／index．cfm Industry＂，STAT－USA，http：／／strategis engineering with a B.Sc (Hons.) from Imperial College London in 1972, majoring in analogue circuit design and electromagnetic field theory, with a Upper Second Class Honours (Cum Laude). Much of his life since then has involved controlling real-life interference problems in high-technology products, systems, and installations, for a variety of companies and organisations in a range of industries. Keith has been a Chartered Electrical Engineer (UK) since 1978, a Group 1 European Engineer since 1988, and has written and presented a great many papers on EMC. He is a past chairman of the IEE's Professional Group (E2) on Electromagnetic Compatibility, is a member of the IEEE's EMC Society, and chairs the IEE's Working Group on

Contact: Keith Armstrong by email at keith.armstrong@cherryclough.com or visit the Cherry Clough website www.cherryclough.com

Keith Armstrong from Cherry Clough Consultants See www.reo.co.uk/
guides for lots of
other practical
guides, similar to
this one, relating to
Electromagnetic (EM)
phenomena. phenomena. If you would like to be kept informed about new guides as soon as they become available, then all you have to do is sign up as a member by going to www.reo.co.uk/ members.php.

 quality power equipment, including electronic controllers, components and electrical regulators, all backed by the application expertise demanded by
specialised, industrial sectors, such as
Controllers designed specifically for use in the parts and materials handling industry, ogether with a wide range of
electromagnets for driving vibratory eeders.

Power controllers for adjusting and regulating voltage, current, frequency or power, as well as its long established variable transformers (variacs) up to 1MVA and sliding resistors of all types. Thes electronic, variable power supplies.

Components for adapting variable speed drives employed in non-standard applications; including inductors, EMC filters and braking resistors. The range of inductive devices extends into railway components for electrical traction and rolling stock, which includes chokes and high-frequency transformers.

Special, toroidal transformers used in safety, medical and energy-saving systems plus high-frequency transfomers used in switch-mode power supplies.

Test equipment such as load banks and
variable AC/DC power supplies,
REO actively searches for development partners, particularly in niche markets, and considers this to be an essential stimulus for creating new and original ideas.

Controllers for vibratory feeders
 Rheostats and variacs

Soft-starts

Phase-angle and frequency

Medical Transformers

REO - Market Sectors
 transformers

Power supplies and load banks

Drive Systems

Filters and braking resistors

[^0]: From: "2005/06 Electricity Distribution Quality of Service Report"
 ofgem report ref: 204/06, 1 December 2006, www.ofgem.gov.uk

[^1]: infrequent, on their mains power supply.

[^2]: stored energy, and can help equipment ride-through short dips and dropouts,

